Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angiogenesis ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733496

RESUMEN

Regenerative capabilities of the endothelium rely on vessel-resident progenitors termed endothelial colony forming cells (ECFCs). This study aimed to investigate if these progenitors are impacted by conditions (i.e., obesity or atherosclerosis) characterized by increased serum levels of oxidized low-density lipoprotein (oxLDL), a known inducer of Endothelial-to-Mesenchymal Transition (EndMT). Our investigation focused on understanding the effects of EndMT on the self-renewal capabilities of progenitors and the associated molecular alterations. In the presence of oxLDL, ECFCs displayed classical features of EndMT, through reduced endothelial gene and protein expression, function as well as increased mesenchymal genes, contractility, and motility. Additionally, ECFCs displayed a dramatic loss in self-renewal capacity in the presence of oxLDL. RNA-sequencing analysis of ECFCs exposed to oxLDL validated gene expression changes suggesting EndMT and identified SOX9 as one of the highly differentially expressed genes. ATAC sequencing analysis identified SOX9 binding sites associated with regions of dynamic chromosome accessibility resulting from oxLDL exposure, further pointing to its importance. EndMT phenotype and gene expression changes induced by oxLDL in vitro or high fat diet (HFD) in vivo were reversed by the silencing of SOX9 in ECFCs or the endothelial-specific conditional knockout of Sox9 in murine models. Overall, our findings support that EndMT affects vessel-resident endothelial progenitor's self-renewal. SOX9 activation is an early transcriptional event that drives the mesenchymal transition of endothelial progenitor cells. The identification of the molecular network driving EndMT in vessel-resident endothelial progenitors presents a new avenue in understanding and preventing a range of condition where this process is involved.

2.
Colloids Surf B Biointerfaces ; 231: 113538, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37738871

RESUMEN

Topical skin formulations often include penetration enhancers that interact with the outer stratum corneum (SC) layer to chemically enhance diffusion. Alternatively, penetration can be mechanically enhanced with simple rubbing in the presence of solid particles sometimes included to exfoliate the top layers of the SC. Our goal was to evaluate micron-sized carbon dioxide bubbles included in a foamed moisturizing formulation as a mechanical penetration enhancement strategy. We show that moisturizing foam bubbles cause an increase in SC formulation penetration using both mechanical and spectroscopic characterization. Our results suggest viscous liquid film drainage between coalescing gaseous bubbles creates local regions of increased hydrodynamic pressure in the foam liquid layer adjacent to the SC surface that enhances treatment penetration. An SC molecular diffusion model is used to rationalize the observed behavior. The findings indicate marked increased levels of treatment concentration in the SC at 2 h and that persists to 18 h after exposure, far exceeding non-foamed treatments. The study suggests an alternate strategy for increasing formulation penetration with a non-chemical mechanism.


Asunto(s)
Dióxido de Carbono , Absorción Cutánea , Piel/metabolismo , Epidermis/metabolismo , Difusión
3.
Angiogenesis ; 25(1): 15-33, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34499264

RESUMEN

The cardiovascular system is composed around the central function of the endothelium that lines the inner surfaces of its vessels. In recent years, the existence of a progenitor population within the endothelium has been validated through the study of endothelial colony-forming cells (ECFCs) in human peripheral blood and certain vascular beds. However, our knowledge on endothelial populations in vivo that can give rise to ECFCs in culture has been limited. In this review we report and analyse recent attempts at describing progenitor populations in vivo from murine studies that reflect the self-renewal and stemness capacity observed in ECFCs. We pinpoint seminal discoveries within the field, which have phenotypically defined, and functionally scrutinised these endothelial progenitors. Furthermore, we review recent publications utilising single-cell sequencing technologies to better understand the endothelium in homeostasis and pathology.


Asunto(s)
Células Progenitoras Endoteliales , Animales , Endotelio Vascular , Humanos , Ratones , Neovascularización Fisiológica
4.
Nat Commun ; 12(1): 2564, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33963183

RESUMEN

Endothelial to mesenchymal transition (EndMT) is a leading cause of fibrosis and disease, however its mechanism has yet to be elucidated. The endothelium possesses a profound regenerative capacity to adapt and reorganize that is attributed to a population of vessel-resident endovascular progenitors (EVP) governing an endothelial hierarchy. Here, using fate analysis, we show that two transcription factors SOX9 and RBPJ specifically affect the murine EVP numbers and regulate lineage specification. Conditional knock-out of Sox9 from the vasculature (Sox9fl/fl/Cdh5-CreER RosaYFP) depletes EVP while enhancing Rbpj expression and canonical Notch signalling. Additionally, skin wound analysis from Sox9 conditional knock-out mice demonstrates a significant reduction in pathological EndMT resulting in reduced scar area. The converse is observed with Rbpj conditionally knocked-out from the murine vasculature (Rbpjfl/fl/Cdh5-CreER RosaYFP) or inhibition of Notch signaling in human endothelial colony forming cells, resulting in enhanced Sox9 and EndMT related gene (Snail, Slug, Twist1, Twist2, TGF-ß) expression. Similarly, increased endothelial hedgehog signaling (Ptch1fl/fl/Cdh5-CreER RosaYFP), that upregulates the expression of Sox9 in cells undergoing pathological EndMT, also results in excess fibrosis. Endothelial cells transitioning to a mesenchymal fate express increased Sox9, reduced Rbpj and enhanced EndMT. Importantly, using topical administration of siRNA against Sox9 on skin wounds can substantially reduce scar area by blocking pathological EndMT. Overall, here we report distinct fates of EVPs according to the relative expression of Rbpj or Notch signalling and Sox9, highlighting their potential plasticity and opening exciting avenues for more effective therapies in fibrotic diseases.


Asunto(s)
Células Endoteliales/metabolismo , Endotelio/metabolismo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Factor de Transcripción SOX9/metabolismo , Transducción de Señal/genética , Animales , Diferenciación Celular/genética , Linaje de la Célula , Endotelio/citología , Femenino , Técnicas de Inactivación de Genes , Proteínas Hedgehog/metabolismo , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Interferente Pequeño , Receptores Notch/metabolismo , Factor de Transcripción SOX9/genética , Factor de Crecimiento Transformador beta/metabolismo , Cicatrización de Heridas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...